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A 3-COMPONENT SYSTEM OF COMPETITION AND DIFFUSION
Masayasu Mimura and Paul C. Fife

1. Introduction

We consider populations of N species S,, S,4¢4+.5y in a bounded habitat, and assume
that the distribution of the populations are determined by competition of Lotka-Volterra-
Gause type and simple diffusion. Suppose ui(t,x) (i=1,2,...,N) 1is the population density
of the species S1 (i=1,2,...,N). The spatial domain is taken to be the one-dimensional
interval (0,1). Then we have the following reaction-diffusion equations governing the

evolution of the uy:

2
aui 9 ui N
t 3= 9 7 + (- j£1 8,590, £ > 0, x € (0,1), (i=1,2,...,N)

where ;. T, and aij (i,j=1,2,...,N) are non-negative constants. In ecological
terms, ri is the intrinsic growth rate of si' an is a measure of intraspecific

competition of S;., and a, . (i#j) is a measure of interspecific competition between the

J
species. The boundary and initial conditions are taken to be T T T
Accession Tor
du _— - L T g T
(2) 3= (6x) =0 for >0, x = 0,1, (i=1,2,...,%) | VTIS GRi&l X |
x | DUIC TAR o
and ClUnenmennt T i
! Tt e A '
(3) ui(O,x) = uio(x) >0 for xe [(0,1] . E—~———;f— o n'jll""—;;::
The case of two competing species (N=2) V' Ry
‘Diftr ctien/
2 v -
du 3 u vioil Pl
— = a ! + (r, - - a,,u)u o -
at 1,2 17 21Y 12927 Aeril :
9x . . L. .
(4) st b Ipeoinl !
2
du ] u, |
= =4d + (r, - a,,u, - a_ _udu
it 2 axz 2 2171 227272
]

has been studied extensively. When r; and aij (1,j=1,2) are fixed arbitrarily except

that the inequalities ‘
/I )
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1 < 1 < 12

229 T2 % —
1
are not both satisfied, the solution of (4), (2), (3) tends to a constant steady state o
e
solution (for instance, [2]). That is, there never appears any spatial segregation for ‘,q
large time. Furthermore, in the remaining case v f
a r a e
11 < ;l < 12 , .
21 T2 222 ‘

Kishimoto [5] showed that even if there exist non-constant nonnegative steady state
solutions, these are unstable. This result indicates that the simple diffusion-competition
model (4) cannot explain spatially segregated distributions of two competing species. The
situation is different when one introduces the effect of cross-population pressure [13)
into (4). It is shown in [11] that there occur non-constant steady state solutions
exhibiting spatial segregation on the basis of cross-diffusion-induced instability (see
also [10]).

These results motivate us to study whether or not systems with more than two
components (N > 3) can exhibit spatial segregation. In this connection, Evans [3]) ana
Kishimoto [6] have already presented some examples of competition and/or prey-predator
systems in the case N = 3 which show diffusion-induced instability. This phenomenon has

usually been associated with activator-inhibitor systems, but competitive interaction does

not fall into that category. A few examples of systems with stable non-constant
bifurcating steady state solutions were given in (6].
Furthermore, Kishimoto, Mimura and Yoshida [7) have recently studied the system (1)

with N = 4 and have shown that there appear time-periodic, spatially non-constant

solutions.

*

In this paper, we will be interested in the stationary problem (1) and (2) with N = 3
under the conditions that two of the diffusion coefficients are sufficiently small. We

show the existence of non-constant, nonnegative solutions by a singular perturbation

construction.

- . T . . .
_“‘Ap ;‘.4444-_41!‘__4: " L._—EM‘-L_L_L‘_L




2. Ecological background and assumption

Uncovering the mechanisms for spatial patterning of ecological communities has been a
very active line or research in population biology. Most often, spatial diversity in
connected habitats has been assumed to be linked to some heterogeneity in the environment,
but it has also been recognized (Levin [9], for example) that stable patterns can exist in
otherwise homogeneous environments. A celebrated mathematical model displaying such
features in the analogous context of chemical interaction (and diffusion) was presented hy
Turing [15] in 1954, and model systems of this general type have been elaborated
extensively since then.

Our context, of course, is a continuous space-time population model incorporating
species interaction and dispersal. Interactions of prey-predator type are analogous to
those of "activator-inhibitor™ type occurring in other disciplines, and are most
reminigscent of the type of chemical interaction that Turing postulated. and, in fact,
small amplitude patterns for two-species prey-predator situations with spatial dispersal
modelled by diffusion operators can, in many cases, be constructed by standard bifurcation
techniques.

Competition-type interactions are not of activator-inhibitor type, however, and so it
is not too surprising that bifurcation techniques provide no stable patterns for two
competing species models. More than this is true. Recently Kishimoto and Weinberger [8]
have shown that no non-constant stable solutions of the corresponding boundary value
problem (bounded and convex domain in one or more dimensions) with no-flux boundary
condition can exist. This raises the question as to whether patterns are possible in
systems with more than two competing species.

The present paper shows that patterns are possible in three-species competition
systems with diffusion. The technique used is not bifurcation, but rather formal singular
perturbation layer analysis, utilizing large differences in the diffusion rates.

In practical terms, these results simply serve to point out yet another mechanism for

stable spatial diversity in homogeneous environments. There has been, of course, no

experimental or observational studies which clearly demonstrate the action of this

Ll e R A A N A O i e O T e D Pl B i




and the boundary conditions

ey

du

present on a tree, their ranges were observed to be segregated:

( dzu
0 =d, =5+ (r, = a,uy = a,,u, = a5u,ly,
dx
dzu2
5 ﬁ 0 =4, ol +(ry - ay,uy = a0, = a5u3)y,
d2u3
0 = a; —5= + (ry - aju, = a5,u, = aj3uy)u,
| dx

_\ (6) E=0, x=0,1, (1=1,2,3)
.. We impose some conditions on r; and a;y (1,3,%,2,3);
:a
a a r
() - I
%32 %33 T3

In ecological terms, this implies that when S, is absent,

becomes extinct in competition. That is, when u, = o,

o . o a T Y e PR Y 'Y

living more in the outer part of the bark, coexisted throughout the ranges of both

mechanism in nature, although segregation phenomena in communities of three species,
possible competing, have been studied. For example, Trlg;rdh [{14] studies the interaction
of three (and more) species of pine beetles. When Blastophaqus piniperda and B. minor were
B. piniperda occupied the
lower, and B. minor the upper region of the trunk. But on a small island B. minor was not

seen, and the range of the other sgpecies was enlarged. A third species, Ips longicollis,

Blastophagus species. Crombie [1] observed a similar ecosystem with Rhizoperta dominica,

species, irrespective of spatial distribution considerations, is recently under

distributions similar to those mentioned above, observed by Trlg;rdh and Crombie.

Consider the stationary version of (1) and (2) with N = 3,

xe(0,|) ’

8, can survive and

r
lim (uz(t,x), u3(t,x)) - (;3— ,0)
] 22
(de Mottoni [2]).
-4-

Sitotroga cerealella, and Oryzaephilus surinamensis. Competition among three or more

investigation by many researchers; for a survey of some of this work, see Schoener {12].

We shall investigate three-species competition systems, and shall look for spatial
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which imply that in the absence of 5, (resp. 82), S, and 52 (resp. 54) may coexist in
competition. (See Figure 1).

- u
2 3 =
b R - J.=]a]juj 0 Uy

Figure 1

-3
Remark 1. The argument in this paper will also handle the case when S, survives to the 11
exclusjon of S‘, when S3 is absent, the other assumptions above remaining unchanged. 3
',‘-1
RS
(H3) 52 and S3 are both slowly diffusing ,
that is, 4, =1, 4_ = €2 and 4, = dcz “’f

1 2 3 .
", for some constant d > 0 (0 < ¢ << 1) 3
. "
[y We will impoge some conditions on r; and aij (i,5=1,2,3) in addition to (H%) and *]
- -
; (H2) later. Note that the question as to whether all three species can coexist in the ’
: ahsence of diffusion is not relevant to the present study. ‘1
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3. Singular perturbation problem

In this section, we consider the reduced system corresponding to (5):

’
2
d v1
0 = 3 + (r1 - A,V T ALY, - 313v3)v1, x e (0,1)
dx
(7)
ﬁ ° (r) = ay,vy = 3y ~avv, o
L 0= (ry = a3,V = 23,%, = a33¥;3)v,

subject to the boundary condition
dv1
(8) ol 0, x =0,1 .

From the second and the third equations of (7), we have four possibilities

(1) v, =v, =0 ,

2 3
r, - a .v
(11) VZ’% L
22
r, -—a_ v
(I11) v, = 0, vy - —1—;-—21~l ’
33
and
- (rz-a21v1)a33 - (ra-a”v‘)az3 (r3-a31v1)322 - (rz-amv‘)a32
(1v) vy = A = .

322233 T 233323 222233 T %32%23

Substituting the relations (I) - (IV) into the first equation of (7), we obtain scalar

equations for v,

2
dv

(9)1 0= + fi(v1)' x e (0,1) (i=I,II,III,IV)

ax
subject to the boundary condition (8), where fi(v) (L{,3,=1,11,...,IV) take the forms

fI(v) = (r1 - a11v)v .

r.a .. .-a,.r a .a _-a__a
1722 12 2 11 2
fII(v) = ( a - Zi 12 2% v]v '
22 22
r.,a,..-a,.r a,.a,.-a,.a
1 11 1
fIII(V) - ( 1 3: 33 _ 3: 1373 v)v ,
33 33

and

.
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1 o

£, (v) = ((a,,a,,~a a2, .)r, + (a ,.a .~a ,a, . )r, + )

v 30030020, | 222%337%32%23)74 1323272122337, B

- - - - L A

(a,,8)3ma33,,0%; = {ag (e 58,575,850 + ay (aya)5-a,,a,) + !
‘13“21‘32"31‘22”"]" .

l. aladl e anas

It is obvious that the forms of €1/ tII and fIII are all convex from above (Figure

2). Therefore, the problems (9)1 (i=I,IX,III) subject to (8) have no non-constant \'.1'

nonnegative solutions. (However, (9)Iv may indeed possess such solutions for suitable L.

r; and ‘ij (i,ju=1,2,3). Our solutions will be constructed differently.) _';

T

—

82

)

-

<

£V p

fn(v) '

-

fm(V) -‘_i

, N v 20
.- - r./a

= u, (13\2) _ 1 4

u, (12\3) o

- 1 .

&: . 1

3 Figure 2 1

We now assume

O §
B

F1322 T 2425 T1233 7 34373
291322 T 292%21 241233 T 243234
where ;1(12\3) is the first component of the solution (u1,u2) of

(H4) u,(12\3) = - :1(13\2) , -

0

Ty T agquy T agUuy T ry T ayquy < agu; =0 .
31(13\2) is similarly understood. We take

G,(1z\3) > 31(13\2) .

Here we construct a new function fII III(v) defined by
] (oiE) = fII(v) for £ < v
II III
EIII(V) for 0 < v<E |,
-7~
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where §£ (;1(12\3) < £ < ;‘(13\2)) is arbitrarily fixed, and consider the problem

2 -
d v1 )
0 = R
(10) 2 + fH XII(vltg)' x e (0,1) s
dx
subject to the boundary condition (8). -
Theorem 1. Fix & arbitrarily so that max(;1(13\2), -;-;(12\3)) <E < u1(12\3). Then the -
problem (10), (8) has a non-constant nonnegative solution v1(x1€) satisfying '®

u, (11\2) < v, (x1E) <G‘(12\3) .
Proof: See Mimura (10).

Using this function v1(x:E), we obtain a solution of the problem (7), (8) as

follows: .
-
v, = v1(x1€) ' )
r, - a, v, (x;€) -
2 201 v .
= %22 ! o
V2
(11) 0 (v1 <E),
0 (v‘l > E)
v, ={ r, - a,.v.(x;£)
3 3 :1 L (v1 < £) (Figure 3) .

33 * ’
The solution (11) shows that S, and S, are coexisting with spatial structure of
segregation. This is an interesting phenomenon because, in the absence of Sy, S3 always
becomes extinct under the assumption (H1). That is, the presence of S, makes the

coexistence of S, and S, possible.

* 1 0 x* 1 ,
vq(x;€) Vo (x;€) v4(x3g)
Figuce 3A
-8
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Figure 3B. "Outer" 'solution

We next consider the problem of whether the solution of the reduced problem (11)
becomes a lowest order approximation to a solution of the original problem (5) when € |is
sufficiently small but non-zero. The solution will be sought in separate regions named
"inner” and "outer" regions and then matched appropriately. It is expected that the
function (11) becomes an "outer" solution outside a neighborhood of x = x*, where x* |is
a point where v1(x') = E. Therefore we seek here an "inner®™ solution in the neighbor-

hood of x = x*. We use the transformation 2z = (x-x*)/¢ in (5) to obtain

.

Bndad




5 . J
: ( L
dzu A
A 0= 21 M 52"1 T a5y T AUy T aggugiu, g, P
] az - @
< dzuz T 4
(12) 0 = =57 % (ry = ayu; = ayu, = ayuylu, , -

dz
2 a?u, o
] U TR T Ut i Tl E e L I .

By putting € = 0 and then \11(2) = v1(x") = £, we obtain a 2-component system with

. respect to u; and u,, which is an approximation to (12):

dzuz ';“
¢ = 7 * (RZ(E) - 32202 - a2303)uz ’
dz
(13) 2 z€@ R ,
d 03
0 =4 3+ (RJ(E) - a0, - a3303)03
dz
where Rl(E) =r - aUE (i = 2,3). The boundary conditions at z = i» are specified as 2@
Rz(S)
02(-») - U2(+n) = 0 ‘
822
and R
e R, (£) N
33 .
We must study the existence of a nonnegative solution (Uz(z), Ua(z)) to the problem (13),
(14).
Here we assume .
a r
(8S) 2,2,
31 3
which implies that the surfaces Iy = a54uy = ay5uy T Ayquy = 0 and I3 = 234y = a35u, - .
ajquq = 0 intersect in lli = {(u1'“2'“3”“1 >0 (i =1,2,3)}. That is, two lines .;.
Rz(i) - ayu, - aju, 0 and Ra(E) - aj,u, - a0, = 0 intersect in :
®} = ((uy,u,)lu, > 0, u, > 0} for each £ satistying u,(21\2) < § < 3,(23\1). Thus, we
find that as £ lincreases, the kinetic system of (13) takes the form of a monostable
system (0 < £ < :1(23\2)), a bistable one (;1(23\2) g < ;1(23\3)) and then a @
monostable one (;1(23\3) < £) again. ]
-10- ..
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Theorem 2. There exists a value £* satisfying ;1(23 2) < E* < ;1(23 3) such that the

problem (13), (14) has a solution (Uz(sz'). 03(2;5‘)). (Figure 4).

Figure 4."Inner" solution

Proof: This is a consequence of Theorem A2 in the Appendix, with the following notational

changes: subscripts 1 in that theorem are to be replaced by 3 for the present

context; r, is to be R3/d, r, is R,, and a1j is ‘sj/d‘

Remark 1. Theorem 2 does not show explicitly the value of £&*. However, when ay, = a3,
* = - -

and a,, = a,,, then £ (rz r3)/(a21 a31) (Gardner [(4]).

Remark 2. The uniqueness of such a £* is not known, but has been confirmed numerically.

Thus, when we assume

(H6) (31(23\2), u, (21\3)) € (u,(1N2), u, (A3

we obtain "outer” solutions (v1(x1£'), vz(x:E'), v3(x1€')), as well as "inner"™ solutions
x=x* x=x* .

(01(x'1£'), Uz( T 1E"), 03( n 1E*)), where £* is determined by Theorem 2 and x* is

found from v1(x't5') = L,

-11-
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The final task is to obtain a solution of the original problem (5), (6) when € |is
sufficiently small but nonzero which corresponds to the "outer" solution of (7), (8) and
the "inner" solution of (13), (14) constructed above. Unfortunately we have not yet been
able to prove the existence of this solution. We show, however, numerical experiments to
supplement the analysis given in this paper, thus further confirming the existence of

solutions exhibiting spatial segregation between two of the species (Figure 5).

-12-
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4. Concluding remark

We have discussed non-constant steady state solutions of a three component system of
competition and diffusion. 1In this system, we have assumed that species 1 and 2, as well
as 1 and 3, can coexist, but 2 and 3 are of exclusive interaction, that is, either 2 or 3
becomes extinct. Thus, a singular perturbation technique constructs non-constant steady
state solutions exhibiting a striking segregated pattern in the species when species 1
diffuses fast but 2 and 3 diffuse glowly. The arqument presented here is also valid in the

situation where species 2 and 3 coexist, but 2 eliminates 1 as well as 3,

-14~-
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Appendix.

Consider the system
u _ + uf(u,v) =0
o e

(A1)
A + vg(u,v) = 0 ,

where

£ = Iy = agqu = a4,V and g = Iy = a4 ~ a5,V .
(ALl of the following extends easily to a much wider class of functions (f,g). We shall
not pursue that generality.)

Definition. The pair (f,q) of this form with r; >0 and ‘13 >0 (i,3 = 1,2) is said

to belong to class 4 if rz/r1 > 322/a12.

For (f,g) € 4, we shall be concerned with conditions under which there exists a
solution of (A1) for x € R satisfying
(A2) tu,vi(-=) = (0,r,/a,,), (u,v)(+=) = (ry/a44:0) .
With no loss of generality we shall assume, for simplicity, that Ty = a5, and r, = ag,.
This may always be achieved by rescaling u and v. Written as a system of 4 first order

equations, (A1) becomes
=p

= -uf(u,v)
(A3)

Qetge o

=q

= =yg(u,v)

Qe

with (f,g) € a, where °* = %; « Solutions of the system will be denoted by X(x) where

X = (u,p,v,q). Clearly the points A = (0,0,1,0) and B = (1,0,0,0) are rest points.

Our main question will be whether there exist trajectories connecting them. The projection
of X(x) onto the (u,v) plane will be denoted by U(x), where U = (u,v).

Proposition 1. The rest point A has a local two-dimensional unstable manifold M which
may be parameterized by points in the (u,v) plane in a neighborhood of (0,1). More
precisely, to each such point (u,v) ¥ (0,1), there correaponds exactly one trajectory

on M, and there exist no other trajectories issuing from A. The trajectories themselves
may be parameterized by a single real parameter.

Proof. The system (A3), linearized about A, can be written as

15~

- L 2 oo
A'A__A_A_A‘J_A‘!-
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(A4)

where H has two positive eigenvalues X1 = /a12 -

X = BX ,

, and 12 = /;; and two negative

ones. The unstable manifold for (A4) is the plane

; - A';, q*

Its trajectories, projected on the

o
2-Tavy+y
p du

and can therefore easily be investigated.

segment

~

€

provided that a > Y. Therefore s

a
21 u+iv .

X1+X 2

2

(;,;) plane, are the solutions of

- a A

v 21 2
= with Y = ————=————  and y =
3 x1¢x1+x2) Ai

For € > 0, they cross tranversally the line

T :u=€(1-8),ve-aca (0 <8< 1) ,

is a parameter for those trajectories entering the

quarter-plane f{u » 0, v < 0} which cross

1 the rest cross the ;;axis between 0 and

€

€, and can be parametrized by the point at which they do so.

Because of this transversality, if we define the similar segment in the (u,v) plane:

€

L :u=¢€¢(1~-8), v=-1=-aes (0 <8¢ 1)

for small enough €, then s can be used to parameterize the trajectories on M whose

projections cross 25

by X {x) = (u (x), pglx), vg{x), qg(x}),

pictured in a neighborhood of A as follows:

(e,1)

(0,1)

(0,1-ac)

from left to right or top to bottom. We denote these trajectories

and their projections by U.(x). The latter are

(e,1)

(0,1;

(0,1-a€) Case u>1
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We are concerned with elucidating conditions under which, for some s, xs is a

connection from A to B. We shall denote by Q the square
Q = (0,1] x (0,1]
in the (u,v) plane.

We shall need to account for sign changes of p and q along xss
Definition. The point U is a turning point for x’ if it lies on the trajectory U',
and if Pg ©F qg vanishes there. (If both Py and q, vanish at that point, it is
counted twice in the following proposition.)

Proposition 2. If U' has two or more turning points before leaving Q, then the first
two are well defined and isolated from the rest. Immedliately after the second, Pg < 0
and qg > 0.

Proof. 1f p‘(x1) = 0 for some x,, it cannot be true that 5'(x1) = 0, for otherwise
ul{x) = us(x1). p{x) = 0 would be a solution of the first two equations in (A3), and by
uniqueness of the initial value problem for that subsystem (v(x) being considered known),
would equal the first two components of xs(x). This is impossible because our
construction does not allow u to be constant. Therefore, p or q (or both) changes
sign at each turning point.

Each fixed trajectory xs has p > 0, g <0 near to (0,1). Suppose p changes
sign at the first turning point, and q does not. Since 6 = -uf < 0 there, that point
must lie where f > 0, i.e. below the line f = 0. Since gq < 0, the trajectory stays
below at least until the second turning point. Therefore p cannot change sign at the
second point, since 5 would have the wrong sign, and it must be q that changes. The
other possible cases are analyzed the same way. In particular, although the first two
turning points may coincide, the first three may not. This completes the proof.
Proposition 3. If Us does not exit Q and does not have more than one turning point,
then it has none, and x‘ is a connection to B.

Proof. There being at most one turning point, u!(x) and v'(x) are eventually monotone,
80 X, (x) must approach a rest point as x + ®. There are four rest points A, B, 0 =

-

(0,0,0,0) and E = (u,0,v,0) where (u,v) is the intersection point of f = g = 0. The

A A
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proof consists in eliminating all except B. A is excluded because it would require two
turning points. We show why E is also excluded: the argument for 0 is similar. 1If

a A

Uy + (u,v) as x+ =, the approach must be monotone. It cannot be from the left and
above f = 0, because then p > 0 and
L = -uf > 0, contradicting the requirement that p + 0. Simjlarly it can not approach
from above, but remaining helow g = 0. This excludes all approaches from above left.
Approaches from below left are impossible hecause on the approach, we would have g > 0.
Since only one sign change was allowed, it must have been «a, and the turning point must
have been below f = 0 and g = 0. But that is impossible because ; would have the
wrong sign there. The other directions of approach may be eliminated for similar
reasons. This completes the proof.
Definition: adz< a is the class of functions (£,9) such that for some s e (0,1), Us
has two or more turning points before leaving Q.
Propogition 4. Suppose (f,g) ¢ o+ 3and there is no monotone connection, A to B. Then
every U. exits @ transversally.
Proof. By Proposition 3, U must exit Q before its second turning point (if it has
one). If it exits through the interior of the bottom of Q, then q < 0 just before and
after exit; if q = 0 at exit, then & = 0 there, and the last two equations of (A3)
would attain a rest point at exit, which is impossible. Therefore q < 0. Similarly exit
through the interior of the right side can not be achieved unless p > 0 there. The other
cases are handled the same way.
Proposition 5. agq is an open set in the space of parameters ry and °1j (1,3 = 1,2).
Proof: Consider a trajectory Xs with two turning points. The proof of Proposition 4
also shows that sign change of p, can not occur on the lateral sides of Q, nor those
of qg on the top or bottom. If Py changes sign before dgs it must therefore do so in
the interior of Q, and then the second turning point must be in the interior or on the

o

left side. The latter is excluded because qs = -vsg < 0 there. A similar argument holds

if the order is reversed. Therefore, both turning points occur in the interior. Now it is

"

1
f

.

- —

'.‘
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|
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easy to see that the trajectory xs, with 8 fixed, depends continuously on the

| R S P

parameters of the equation. It therefore continues to have two turning points before

exiting © when the parameters are changed by a small amount.
Theorem Al. Let the family (f.g)r e a Jdepend continuously on
Assume (f,g)r e ag for r = 0, but not for all positive r.

sup(; : (f,g)r e ay for 0 < r ¢ T}. Then A is connected to

Proof. Our trajectories now depend on two parameters, that is,

sequence with r 4 r*, and let s be such that U has
n n Sn'Fn

1.‘
VN PP Py

»

the real parameter

. A

two turning points before

leaving Q. By possibly taking a subsequence, we may assume that

Now s* € (0,1), because it is easily seen that any trajectory Us
’

in a neigh-

borhood of 0 or of 1 does not have two turning points before leaving Q.

trajectory X

exists a connectioi. for r = r*, or every trajectory us,r‘

Consider the
g%, r** By Proposition 5, (f,q)r. ¢ 43; hence by Proposition 4, either there

leaves Q transversally,

before experiencing two turning points. The proof of the theorem consists in excluding the

second case. That case would imply, in particular, that Us*,r'

exits transversally, and

that while Us',r'(x) € 9, either p or g remains of one sign and is bounded away from

x'. g+ Can be approximated by portions of the trajectories Xs s
4 n

n

=19~

zero near the exit point. By continuity of trajectories with respect to parameters,

Therefore for such n, the Usn,r also exit transversally before experiencing a second
turning point. This contradicts their construction and finishes the proof.

Corollary to Proposgition 4. If (f,g) ¢ X then there exists a monotone trajectory which
attains or approaches (1,0). 1If, in addition, no connection exists, then any given point
on the bottom or right side of Q is attained by some trajectory U,

Proof: If there exists a monotone connection, we are done. If not, Proposition 4 shows

that every U, exits transversally. For small s, the exit point is on the top of Q.

R
'-"L“A

For s = 1 the trajectory lies on the v axis and the exit point is the origin.

T e e
2

f{‘;j.-.

PPV AT OF WY

D

transversality, a standard argument shows that the exit point depends continuously on

Therefore the range of exit points must include every point between those for




L S N Ty w L Ty rrwrwe e or

ad

"

and s near 1, proceeding either clockwise or counter. But (0,1) is not an exit point

{it would require two turning points), so we proceed clockwise, and cover all of the sides i‘
indicated. \:
For the following proposition, we divide Q into four reglons 'E
I ={f<0<glnQ II={£>0,g>0ln0Q , “
I = {g< 0 <flngQ Iv={f<co0, gc<oO}ng . .’

For a monotone trajectory U, from (0,1) to (1,0), we denote
T = {Us(x)} no, *
——l
Jie = Ifrﬂluf(u,v)dul, JIg = lfrnlvg(u,v)dvl .1
and gimilarly for JIIf' etc. ;
Proposition 6. Let there exist a monotone trajectory us approaching or attaining .j
(1,0). Then the following estimates hold, where the symbols ¢ and C denote positive .‘
constants depending only on lower and upper bounds for the constants Kie ‘lj (1,3 = 1,2), :
and a, where we define a = the length of 3III {v=0}. They do not represent the same ?
constants in each instance. Here b is the diameter of the region 1I. ,;
(a) Jpe + JIg £ Cby .?
(b) JIVg 2 eJrye = Chi f
(c) the inequality Jrrre * JIVf = 8 < ¢ implies ‘
JIIIg + JIVg > ¢ and JIIq £ C(s+b); .‘
() Jpe * Irve 2 I11e * Irnze? ?
ter Jyg * I11g 2 Y1119 * J1vg° o

Proof: (a) follows immediately from the fact that the length of TN I is bounded by 2b.

(b) In the limiting case I = @, we have vg > cuf in IV, from which the result

follows in that case with C = 0. When I # #, this inequality is violated only near the

intersection 31 N 3III, which has length < b,

(c) The following sketched argument can easily be quantified. The integral

o
a2

luf|du = J +J can be made small only by requiring that T N\ (III V IV)

frn(IIIUIV) IIIf IvVE

lie mostly in some small enough neighborhood of {f = 0}, the size of the nelghborhood

=20~
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depending on a lower bound for a. But lying in this neighborhood forces If vgdv| to be
larger than some minimum amount, since |[vg] is not also small in that neighborhood. It,
together with the monotoncity of T', also forces I A IT to lie near 3I N 3II, hence
the final estimate in (c).

(d) Multiply the second equation of (A3) by p and integrate from —» until (1,0)
is attained. We find that the value of p at (1,0) satisfies

292 = [, uta,wiau> 0 .

The integral appearing here is equal to

= Jrve Y Irre Y Jrrre ¢

= Jie
hence (d).
(e) is proved in the same manner.
For purpose of the following theorem, we remove the restriction r2/a22 = r1/a11 = 1.
Proposition 6 is clearly valid without it.

Theorem A2. Let the coefficients ry >0 and aij >0 (1,3 = 1,2) depend continuously on

a real parameter £ for £ in some interval A. Assume that for all & €A

a a
22  at
12 n

Assume that for some £ €A, rz/r1 £ azz/a12, and for another value, r2/r1 2 a21/a1'.
Then for some £ € A, there exists a solution of (A1), (A2),
Proof: For values of £ such that r2/r1 ; az‘/a11, we have that (f,q) € 4, but ¢ ao.
To see the latter, observe from the proof of Proposition 2 that if a trajectory has two
turning points, they must lie in the region III where £ > 0 and g < 0. But the
assumed inequalities imply that region is empty.

On the other hand, by continuous dependence on £, there are values of £ for
which a22/a12 < rz/z'1 < a21/a1‘ and t2/r1 is arbitrarily close to 522/321' When it is
close, the size of I is small, the parameter a, remaining bounded away from zero. For
sufficiently small b, we show (f,g) e ag. This, together with Theorem A1 will establish

the desired result. It suffices to show there exists no monotone trajectory attaining or

approaching (r1/a11,0). Suppose there were. A straight-forward calculation shows that

-21-
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I' must be concave upward in IV and downward in II. It follows from this and the fact that
I' must reach (r1/a11,0) that either TN II or I A IV must be empty. Suppose it is
the former. For some & > 0, let Ao be the set of £ for which

322/a12 < r2/r1 < a22/a12 + 8. In the following, the constants ¢ and C are uniformly
bounded from below and above for £ € Ao' and do not necessarily denote the same constant,
even within a single context. From (a) in Proposition 6, we have Jye * JIg < Cb, and
from (e),

> J + .
2 JIg Illg JIVg

Hence if b is small enough, the inequality in (c) regarding JIIIq + Jqu is violated,
hence Jrrre * Jpve > €+ From this and the fact (d) that JIf * Jrye ? 3i1gee we have

+ +
Jrf 2JIVf > JIrrre JIvf e .

80

1
JIVf > 2 (c - Cb) .

2
The same type of inequality also holds (b) for J.,. : JIVg > § (c -Cb) > c/4 (for b

g9
2
small enough). From (e), this implies JIg > ¢ /4, which for small b contradicts the
fact that J__ < Cb.
Ig
The other case igs when T' N IV = ¢. Again, we have J__ < Cb. From (d), we obtain

1f

Cbh > JI >J =J +J so the hypothesis of (c) is fulfilled for small b. Hence

£ IIf IIf IVE'

JIIg CC(b+s) <Cb .
But this contradicts (e), whose left side i{s hounded by Cb, and right side (by (c)) is

bounded from bglov. Therefore, no such T can exist. This completes the proof.
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